Selasa, 15 Maret 2011

Komponen-Komponen Jaringan Komputer:

1. PC
2. NIC atau Kartu Jaringan
    adalah sebuah kartu yang berfungsi sebagai jembatan dari komputer ke sebuah jaringan komputer. Jenis NIC yang beredar, terbagi menjadi dua jenis, yakni NIC yang bersifat fisik, dan NIC yang bersifat logis. Contoh NIC yang bersifat fisik adalah NIC EthernetToken Ring, dan lainnya; sementara NIC yang bersifat logis adalah loopback adapter dan Dial-up Adapter. Disebut juga sebagaiNetwork Adapter. Setiap jenis NIC diberi nomor alamat yang disebut sebagai MAC address, yang dapat bersifat statis atau dapat diubah oleh pengguna.

NIC menggunakan interface RJ-45 (8 bit)

Empat warna dasar kabel:
a. Orange
b. Hijau
c. Biru
d. Coklat
Setiap warna memiliki pasangan berwarna putih.

Konsep pemasangan kabel:
a. Yang berwarna putih berada pada pin ganjil
b. Pin 1 & 2, 3&6, 4&5, dan 7&8 merupakan pasangan.
c. 4&5 berwarna biru dan 7&8 berwarna coklat.

Standar Warna A               B
                            HP            OP
                             H              O
                            OP            HP
                             B              B
                             BP           BP
                             O             H
                             CP           CP
                              C             C

Standar Jaringan:
- Ethernet         10 mbps
- Fast Ethernet  100 mbps
- Giga bit Ethernet  1000 mbps
- 10 Giga bit Ethernet  10000 mbps

Konversi Nilai:



Bagan Pengukuran Data
SatuanUkuran
BitSatuan
Angka Biner (1 or 0)
Byte8
bits
Kilobyte
(KB)
1,024
Bytes
or
»
8192
bits
Megabyte
(MB)
1,024
Kilobytes
or
»
1048576
Bytes
8388608
Bits
Gigabyte
(GB)
1,024
Megabytes
or
»
1048576
KB
1073741824
Bytes
8589934592
Bits
Terabyte
(TB)
1,024
Gigabytes
or
»
1048576
MB
1073741824
KB
1099511627776
Bytes
8796093022208
Bits
Petabyte
(PB)
1,024
Terabytes
or
»
1048576
GB
1073741824
MB
1099511627776
KB
1125899906842624
Bytes
9007199254740992
Bits
Exabyte
(EB)
1,024
Petabytes
or
»
1048576
TB
1073741824
GB
1099511627776
MB
1125899906842624
KB
11522921504606846976
Bytes
9223372036854775808
Bits


3. Network Device
   - HUB 
     Hub adalah sebuah perangkat jaringan komputer yang berfungsi untuk menghubungkan peralatan-peralatan dengan ethernet 10BaseT atau serat optik sehingga menjadikannya dalam satu segmen jaringan. Hub bekerja pada lapisan fisik (layer 1) pada model OSI.

- Switch
Switch jaringan (atau switch untuk singkatnya) adalah sebuah alat jaringan yang melakukan bridging transparan (penghubung segementasi banyak jaringan denganforwarding berdasarkan alamat MAC).
Switch jaringan dapat digunakan sebagai penghubung komputer atau router pada satu area yang terbatas, switch juga bekerja pada lapisan data link, cara kerja switch hampir sama seperti bridge, tetapi switch memiliki sejumlah port sehingga sering dinamakan multi-port bridge.
 Perbedaan Hub dengan Swicth:
- Hub lebih lambat dari pada Swicth. Swicth mempunyai perangkat Room yang berfungsi untuk mencari data informasi pada alamat yang ada pada komputer PC (NIC0.

ROUTER
Router berfungsi menghubungkan dua jaringan yang berbeda.
outer adalah sebuah alat jaringan komputer yang mengirimkan paket data melalui sebuah jaringan atau Internetmenuju tujuannya, melalui sebuah proses yang dikenal sebagai routing. Proses routing terjadi pada lapisan 3 (Lapisan jaringan seperti Internet Protocol) dari stack protokol tujuh-lapis OSI.



BRIDGE
Bridge merupakan kebalikan dari Router, menghubungkan dua jaringan yang sama.
Bridge merupakan sebuah perangkat atau alat yang menghubungkan beberapa jaringan untuk mendapatkan jaringan yang efiesien. Kebanyakan bridge dapat mengetahui masing-masing alamat dari tiap segmen komputer pada jaringan disekitarnya.
Diibaratkan bahwa bridge seperti lalu lintas yang mengatur di persimpangan jalan pada saat jam-jam sibuk. Bridge mengatur agar informasi di antara kedua sisi jaringan tetap berjalan dengan baik dan teratur. Bridge juga dapat digunakan sebagai koneksi jaringan yang menggunakan tipe kabel yang berbeda ataupun topologi yang berbeda pula.













 4. Media Transmisi
    Terbagi dua:
- Wire   : - UTP
               - Fiber Optik
               - Coaxial
- Wireless : - WiFi


5. NOS (Network Operating System)
Sistem operasi jaringan (Inggris: network operating system) adalah sebuah jenis sistem operasi yang ditujukan untuk menangani jaringan. Umumnya, sistem operasi ini terdiri atas banyak layanan atau service yang ditujukan untuk melayani pengguna, seperti layanan berbagi berkas, layanan berbagi alat pencetak (printer), DNS Service, HTTP Service, dan lain sebagainya. Istilah ini populer pada akhir dekade 1980-an hingga awal dekade 1990-an.

SAMBUNGAN KOMPONEN DASAR JARINGAN


Komponen MainBoard:
-Prosesor
-Memory : tempat penyimpanan data sementara
Kartu memori adalah sebuat alat penyimpan data digital; seperti gambar digital, berkas digital ,suara digital dan video digital. Kartu memori biasanya mempunyai kapasitas ukuran berdasarkan standard bit digital yaitu 16MB, 32MB,64MB, 128MB, 256MB dan seterusnya kelipatan dua. Kartu memori terdapat beberapa tipe yang sampai sekarang ini ada sekitar 43 jenis. Jumlah kapasitas terbesar saat ini adalah tipe CF (Compact Flash) dengan 8 GB (info : 1 GB = 1024MB, 1048576KB). Untuk membaca data digital yang disimpan di dalam kartu memori kedalam komputer, diperlukan perangkat pembaca kartu memori (memory card reader).












- Hardisk  
Hardisk berupa piringan logam, glass, atau keramik yang tipis tetapi kaku dan dibungkus dengan sesuatu sehingga data dapat disimpan dalam bentuk titik-titik magnet. Hard drive minimal mempunyai 2 piringan/disk. Semakin banyak piringan berarti semakin besar kapasitasnya. Setiap piringan dipisahkan dengan ruang sempit dan diapit oleh kumparan berotasi yang berfungsi untuk menyatukan piringan-piringan tersebut. Hardisk terletak di unit hardisk drive tertutup untuk mencegah masuknya benda-benda asing ke dalamnya. Data bisa disimpan pada kedua sisi piringan disk.
  
Media penyimpanan baru selain Hardisk adalah SSD (Solid State Disk) adalah media penyimpanan yang berupa memory.
Corsair CMFSSD-128GBG2D




- VGA

VGA, singkatan dari Video Graphics Adapter, adalah standar tampilan komputer analog yang dipasarkan pertama kali oleh IBM pada tahun 1987. Walaupun standar VGA sudah tidak lagi digunakan karena sudah diganti oleh standar yang lebih baru, VGA masih diimplementasikan pada Pocket PC. VGA merupakan standar grafis terakhir yang diikuti oleh mayoritas pabrik pembuat kartu grafis komputer. Tampilan Windows sampai sekarang masih menggunakan modus VGA karena didukung oleh banyak produsen monitor dan kartu grafis.

Istilah VGA juga sering digunakan untuk mengacu kepada resolusi layar berukuran 640×480, apa pun pembuat perangkat keras kartu grafisnya. Kartu VGA berguna untuk menerjemahkan keluaran komputer ke monitor. Untuk proses desain grafis atau bermain permainan video, diperlukan kartu grafis yang berdaya tinggi. Produsen kartu grafis yang terkenal antara lain ATI dan nVidia.

Selain itu, VGA juga dapat mengacu kepada konektor VGA 15-pin yang masih digunakan secara luas untuk mengantarkan sinyal video analog ke monitor. Standar VGA secara resmi digantikan oleh standar XGA dari IBM, tetapi nyatanya VGA justru digantikan oleh Super VGA.

 2. NIC
 - Ethernet                     : 10 mbps
- Fast Ethernet              : 100 mbps
- Giga Bit Ethernet       : 1000 mbps
- 10 Giga Bit Ethernet  : 10000 mbps

3. Network Device

a. Switch Managabel Layer 3

3COM SWITCH HUB 24PORT MANAGEABLE











b. Router


ENKRIPSI DAN DEKRIPSI

Kriptografi, secara umum adalah ilmu dan seni untuk menjaga kerahasiaan berita [bruce Schneier - Applied Cryptography]. Selain pengertian tersebut terdapat pula pengertian ilmu yang mempelajari teknik-teknik matematika yang berhubungan dengan aspek keamanan informasi seperti kerahasiaan data, keabsahan data, integritas data, serta autentikasi data [A. Menezes, P. van Oorschot and S. Vanstone - Handbook of Applied Cryptography]. Tidak semua aspek keamanan informasi ditangani oleh kriptografi.
Ada empat tujuan mendasar dari ilmu kriptografi ini yang juga merupakan aspek keamanan informasi yaitu :
1. Kerahasiaan, adalah layanan yang digunakan untuk menjaga isi dari informasi dari siapapun kecuali yang memiliki otoritas atau kunci rahasia untuk membuka/mengupas informasi yang telah disandi.
2. Integritas data, adalah berhubungan dengan penjagaan dari perubahan data secara tidak sah. Untuk menjaga integritas data, sistem harus memiliki kemampuan untuk mendeteksi manipulasi data oleh pihak-pihak yang tidak berhak, antara lain penyisipan, penghapusan, dan pensubsitusian data lain kedalam data yang sebenarnya.
3. Autentikasi, adalah berhubungan dengan identifikasi/pengenalan, baik secara kesatuan sistem maupun informasi itu sendiri. Dua pihak yang saling berkomunikasi harus saling memperkenalkan diri. Informasi yang dikirimkan melalui kanal harus diautentikasi keaslian, isi datanya, waktu pengiriman, dan lain-lain.
4. Non-repudiasi., atau nirpenyangkalan adalah usaha untuk mencegah terjadinya penyangkalan terhadap pengiriman/terciptanya suatu informasi oleh yang mengirimkan/membuat.
Algoritma Sandi
algoritma sandi adalah algoritma yang berfungsi untuk melakukan tujuan kriptografis. Algoritma tersebut harus memiliki kekuatan untuk melakukan (dikemukakan oleh Shannon):
konfusi/pembingungan (confusion), dari teks terang sehingga sulit untuk direkonstruksikan secara langsung tanpa menggunakan algoritma dekripsinya difusi / peleburan (difusion), dari teks terang sehingga karakteristik dari teks terang tersebut hilang.
sehingga dapat digunakan untuk mengamankan informasi. Pada implementasinya sebuah algoritmas sandi harus memperhatikan kualitas layanan/Quality of Service atau QoS dari keseluruhan sistem dimana dia diimplementasikan. Algoritma sandi yang handal adalah algoritma sandi yang kekuatannya terletak pada kunci, bukan pada kerahasiaan algoritma itu sendiri. Teknik dan metode untuk menguji kehandalan algoritma sandi adalah kriptanalisa.

Block-Cipher
Block-cipher adalah skema algoritma sandi yang akan membagi-bagi teks terang yang akan dikirimkan dengan ukuran tertentu (disebut blok) dengan panjang t, dan setiap blok dienkripsi dengan menggunakan kunci yang sama. Pada umumnya, block-cipher memproses teks terang dengan blok yang relatif panjang lebih dari 64 bit, untuk mempersulit penggunaan pola-pola serangan yang ada untuk membongkar kunci. Untuk menambah kehandalan model algoritma sandi ini, dikembangkan pula beberapa tipe proses enkripsi, yaitu :
�� ECB, Electronic Code Book
�� CBC, Cipher Block Chaining
�� OFB, Output Feed Back
�� CFB, Cipher Feed Back

Stream-Cipher
Stream-cipher adalah algoritma sandi yang mengenkripsi data persatuan data, seperti bit, byte, nible atau per lima bit(saat data yang di enkripsi berupa data Boudout). Setiap mengenkripsi satu satuan data di gunakan kunci yang merupakan hasil pembangkitan dari kunci sebelum.

ROT13
ROT13 (dari Bahasa Inggris rotate by 13, putar 13 kali), adalah algoritma enkripsi sederhana yang menggunakan sandi abjad-tunggal dengan pergeseran k=13 (huruf A diganti dengan N, huruf B diganti dengan O, dan seterusnya). Enkripsi ini merupakan penggunaan dari sandi Caesar dengan geseran 13. ROT13 biasanya digunakan di forum internet, agar spoiler, jawaban teka-teki, kata-kata kotor, dan semacamnya tidak terbaca dengan sekilas. Hal ini mirip dengan mencetak jawaban TTS secara terbalik di surat kabar atau majalah.

Sabtu, 05 Maret 2011

RISC dan CISC


1. CISC (Complex Instructions Set Computer).

Dimana prosesor tersebut memiliki set instruksi yang kompleks dan lengkap. CISC sendiri adalah salah satu bentuk arsitektur yang menjalani beberapa instruksi dengan tingkat yang rendah. Misalnya intruksi tingkat rendah tersebut yaitu operasi aritmetika, penyimpanan-pengambilan dari memory.
CISC memang memiliki instruksi yang complex dan memang dirasa berpengaruh pada kinerjanya yang lebih lambat. CISC menawarkan set intruksi yang powerful, kuat, tangguh, maka tak heran jika CISC memang hanya mengenal Bahasa Asembly yang sebenarnya ia tujukan bagi para
Programmer. Oleh karena itu ,CISC hanya memerlukan sedikit instruksi untuk berjalan.
Sistem Mikrokontroler selalu terdiri dari perangkat keras (hardware) dan perangkat lunak (software). Perangkat lunak ini merupakan deretan perintah atau instruksi yang dijalankan oleh prosesor secara sekuensial. Instruksi itu sendiri sebenarnya adalah bit-bit logik 1 atau 0 (biner) yang ada di memori program. Angka-angka biner ini jika lebarnya 8 bit disebut byte dan jika 16 bit disebut word.
Deretan logik biner inilah yang dibaca oleh prosesor sebagai perintah atau instruksi. Supaya lebih singkat, angka biner itu biasanya direpresentasikan dengan bilangan hexa (HEX). Tetapi bagi manusia, menulis program dengan angka biner atau hexa sungguh merepotkan. Sehingga dibuatlah Bahasa Assembler yang direpresentasikan dengan penyingkatan kata-kata yang cukup dimengerti oleh manusia.
Bahasa Assembler ini biasanya diambil dari bahasa Inggris dan presentasinya itu disebut dengan Mnemonic. Masing-masing pabrik mikroprosesor melengkapi chip buatannya dengan set instruksi yang akan dipakai untuk membuat program.

Contohnya pada Diagaram dibawah ini :

Biner Hexa Mnemonic
10110110 B6 LDAA
10010111 97 STAA
01001010 4A DECA
10001010 8A ORAA
00100110 26 BNE
00000001 01 NOP
01111110 7E JMP

Jadi sebenarnya Tujuan utama dari arsitektur CISC adalah melaksanakan suatu perintah cukup dengan beberapa baris bahasa mesin sedikit mungkin. Hal ini bisa tercapai dengan cara membuat perangkat keras prosesor mampu memahami dan menjalankan beberapa rangkaian operasi. Untuk tujuan contoh kita kali ini, sebuah prosesor CISC sudah dilengkapi dengan sebuah instruksi khusus, yang kita beri nama MULT. Saat dijalankan, instruksi akan membaca dua nilai dan menyimpannya ke 2 register yag berbeda, melakukan perkalian operan di unit eksekusi dan kemudian mengambalikan lagi hasilnya ke register yang benar. Jadi instruksi-nya cukup satu saja, Sedangkan
2. RISC (Reduce Instructions Set Computer)

Adalah Prosesor tersebut memiliki set instruksi program yang lebih sedikit. Karena perbedaan keduanya ada pada kata set instruksi yang kompleks atau sederhana (reduced). RISC lahir pada pertengahan 1980,
kelahirannya ini dilator belakangi untuK CISC. Perbedaan mencolok dari kelahiran RISC ini adalah tidak ditemui pada dirinya instruksi Assembly atau yang dikenal dengan Bahasa Mesin sedangkan itu banyak sekali di jumpai di CISC.

Konsep Arsitektur RISC banyak menerapkan proses eksekusi pipeline.
Meskipun jumlah perintah tunggal yang diperlukan untuk melakukan pekerjaan yang diberikan mungkin lebih besar, eksekusi secara pipeline memerlukan waktu yang lebih singkat daripada waktu untuk melakukan pekerjaan yang sama dengan menggunakan perintah yang lebih rumit. Mesin RISC memerlukan memori yang lebih besar untuk mengakomodasi program yang lebih besar.
Salah satu contoh adalah IBM 801 adalah prosesor komersial pertama yang menggunakan pendekatan RISC. Untuk lebih lanjut memahami RISC, diawali dengan tinjauan singkat tentang karakteristik eksekusi Instruksi yaitu Aspek komputasi yang ditinjau dalam merancang mesin RISC adalah sbb.:

>>Operasi-operasi yang dilakukan: Hal ini menentukan fungsi-fungsi yang akan dilakukan oleh CPU dan interaksinya dengan memori.

>> Operand-operand yang digunakan: Jenis-jenis operand dan frekuensi pemakaiannya akan menentukan organisasi memori untuk menyimpannya dan mode pengalamatan untuk mengaksesnya.

>> Pengurutan eksekusi: Hal ini akan menentukan kontrol dan organisasi pipeline.
Salah satu jenis dari arsitektur, dimana Superscalar adalah sebuah Uniprocessor yang dapat mengeksekusi dua atau lebih operasi scalar dalam bentuk paralel. Merupakan salah satu rancangan untuk meningkatkan kecepatan CPU. Kebanyakan dari komputer saat ini menggunakan mekanisme Superscalar ini.

Standar Pipeline yang digunakan adalah untuk pengolahan bilangan matematika integer (bilangan bulat, bilangan yang tidak memiliki pecahan), kebanyakan CPU juga memiliki kemampuan untuk pengolahan untuk data Floating Point (bilangan berkoma). Pipeline yang mengolah integer dapat juga digunakan untuk mengolah data bertipe floating point ini, namun untuk aplikasi tertentu, terutama untuk aplikasi keperluan ilmiah CPU yang memiliki kemampuan pengolahan floating point dapat meningkatkan kecepatan prosesnya secara dramatis. Peristiwa menarik yang bisa dilakukan dengan metoda superscalar ini adalah dalam hal memperkirakan pencabangan instruksi (brach prediction) serta perkiraan eksekusi perintah (speculative execution). Peristiwa ini sangat menguntungkan buat program yang membutuhkan pencabangan dari kelompok intruksi yang dijalankankannya. Program yang terdiri dari kelompok perintah bercabang ini sering digunakan dalam pemrograman.
Contohnya dalam menentukan aktifitas yang dilakukan oleh suatu sistem berdasarkan umur seseorang yang sedang diolahnya, katakanlah jika umur yang bersangkutan lebih dari 18 tahun, maka akan diberlakukan instruksi yang berhubungan dengan umur tersebut, anggaplah seseorang tersebut dianggap telah dewasa, sedangkan untuk kondisi lainnya dianggap belum dewasa. Tentu perlakuannya akan dibedakan sesuai dengan sistem yang sedang dijalankan. Lalu apa yang dilakukan oleh CPU untuk hal ini? Komputer akan membandingkan nilai umur data yang diperolehnya dengan 18 tahun sehingga komputer dapat menentukan langkah dan sikap yang harus diambilnya berdasarkan hasil perbandingan tersebut. Sikap yang diambil tentu akan diambil berdasarkan pencabangan yang ada.
Pada CPU yang mendukung perintah pencabangan ini, CPU membutuhkan lumayan banyak clock cycle, mengingat CPU menempatkan semuanya pada pipeline dan menemukan perintah berikutnya yang akan dieksekusinya. Sirkuit untuk branch prediction melakukan pekerjaan ini bekerja sama dengan pipeline, yang dilakukan sebelum proses di ALU dilaksanakan, dan memperkirakan hasil dari pencabangan tersebut. Jika CPU berfikir bahwa branch akan menuju suatu cabang, biasanya berdasarkan pekerjaan sebelumnya, maka perintah berikutnya sudah dipersiapkan untuk dieksekusi berikut datadatanya, bahkan dengan adanya pipeline ini, bila tidak diperlukan suatu referensi dari instruksi terakhir, maka bisa dilaksanakan dengan segera, karena data dan instruksi yang dibutuhkan telah dipersiapkan sebelumnya.. Dalam hal speculative execution, artinya CPU akan menggunakan melakukan perhitungan pada pipeline yang berbeda berdasarkan kemungkinan yang diperkirakan oleh komputer. Jika kemungkinan yang dilakukan oleh komputer tepat, maka hasilnya sudah bisa diambil langsung dan tinggal melanjutkan perintah berikutnya, sedangkan jika kemungkinan yang diperkirakan oleh komputer tidak tepat, maka akan dilaksanakan kemungkinan lain sesuai dengan logika instruksi tersebut. Teknik yang digunakan untuk pipeline dan superscalar ini bisa melaksanakan Branch Prediction dan speculative execution tentunya membutuhkan ekstra transistor yang tidak sedikit untuk hal tersebut. Sebagai perbandingan, komputer yang membangkitkan pemrosesan pada PC pertama yang dikeluarkan oleh IBM pada mesin 8088 memiliki sekitar 29.000 transistor. Sedangkan pada mesin Pentium III, dengan teknologi superscalar dan superpipeline, mendukung branch prediction, speculative execution serta berbagai kemampuan lainnya memiliki sekitar 7,5 juta transistor. BeberapA CPU terkini lainnya seperti HP 8500 memiliki sekitar 140 juta transistor.


3. Perbedaan karakteristik CISC dan RISC.

CISC dan RISC perbedaannya tidak signifikan jika hanya dilihat dari terminologi set instruksinya yang kompleks atau tidak (reduced). Lebih dari itu, RISC dan CISC berbeda dalam filosofi arsitekturnya. Filosofi arsitektur CISC adalah memindahkan kerumitan software ke dalam hardware.

Teknologi pembuatan IC saat ini memungkinkan untuk menamam ribuan bahkan jutaan transistor di dalam satu dice. Bermacam-macam instruksi yang mendekati bahasa pemrogram tingkat tinggi dapat dibuat dengan tujuan untuk memudahkan programmer membuat programnya. Beberapa prosesor CISC umumnya memiliki microcode berupa firmware internal di dalam chip-nya yang berguna untuk menterjemahkan instruksi makro. Mekanisme ini bisa memperlambat eksekusi instruksi, namun efektif untuk membuat instruksi-instruksi yang kompleks. Untuk aplikasi-aplikasi tertentu yang membutuhkan singlechip komputer, prosesor CISC bisa menjadi pilihan.


4. Karakteristik CISC versus RISC

Rancangan RISC dapat memperoleh keuntungan dengan mengambil sejumlah feature CISC dan Rancangan CISC dapat memperoleh keuntungan dengan mengambil sejumlah feature RISC.
Hasilnya adalah bahwa sejumlah rancangan RISC yang terbaru, yang dikenal sebagai PowerPC, tidak lagi “murni” RISC dan rancangan CISC yang terbaru, yang dikenal sebagai Pentium, memiliki beberapa karakteristik RISC.

5. Ciri-ciri RISC:
1. Instruksi berukuran tunggal.
2. Ukuran yang umum adalah 4 byte.
3. Jumlah mode pengalamatan data yang sedikit, biasanya kurang dari lima buah.
4. Tidak terdapat pengalamatan tak langsung.
5. Tidak terdapat operasi yang menggabungkan operasi load/store dengan operasi aritmetika (misalnya, penambahan dari memori, penambahan ke memori)
Sebaliknya, filosofi arsitektur RISC adalah arsitektur prosesor yang tidak rumit dengan membatasi jumlah instruksi hanya pada instruksi dasar yang diperlukan saja. Kerumitan membuat program dalam bahasa mesin diatasi dengan membuat bahasa program tingkat tinggi dan compiler yang sesuai. Karena tidak rumit, teorinya mikroprosesor RISC adalah mikroprosesor yang low-cost dalam arti yang sebenarnya. Namun demikian, kelebihan ruang pada prosesor RISC dimanfaatkan untuk membuat sistem-sistem tambahan yang ada pada prosesor modern saat ini. Banyak prosesor RISC yang di dalam chip-nya dilengkapi dengan sistem superscalar, pipelining, caches memory, register-register dan sebagainya, yang tujuannya untuk membuat prosesor itu menjadi semakin cepat.
Sudah sering kita mendengar debat yang cukup menarik antara komputer personal IBM dan kompatibelnya yang berlabel Intel Inside dengan komputer Apple yang berlabel PowerPC. Perbedaan utama antara kedua komputer itu ada pada tipe prosesor yang digunakannya. Prosesor PowerPC dari Motorola yang menjadi otak utama komputer Apple Macintosh dipercaya sebagai prosesor RISC, sedangkan Pentium buatan Intel diyakini sebagai prosesor CISC. Kenyataannya komputer personal yang berbasis Intel Pentium saat ini adalah komputer personal yang paling banyak populasinya. Tetapi tidak bisa pungkiri juga bahwa komputer yang berbasis RISC seperti Macintosh, SUN adalah komputer yang handal dengan sistem pipelining, superscalar, operasi floating point dan sebagainya. Tersedia dari peningkatan kinerja superscalar teknik dibatasi oleh dua bidang utama:

• Tingkat dari hakiki paralel dalam instruksi streaming, yakni terbatasnya jumlah instruksi level parallelism, dan
• Kompleksitas waktu dan biaya yang terkait memberangkatkan dan ketergantungan memeriksa logika.
Binari yang ada telah dijalankan program tahap hakiki paralel. Dalam beberapa kasus petunjuk tidak tergantung pada satu sama lain dan dapat dijalankan secara bersamaan. Dalam kasus lain mereka yang antar-tergantung yaitu satu instruksi dampak baik sumber daya atau hasil lainnya. Petunjuk yang = b + c; d = e + f dapat berjalan secara bersamaan karena tidak ada yang bergantung pada hasil perhitungan lain. Namun, petunjuk yang = b + c; d = a + f mungkin tidak akan runnable secara paralel, tergantung pada urutan petunjuk yang lengkap saat mereka bergerak melalui unit.
Bila jumlah yang dikeluarkan secara simultan petunjuk meningkat, biaya memeriksa dependensi meningkat sangat pesat. Hal ini diperparah oleh kebutuhan untuk memeriksa dependensi di waktu dan menjalankan di CPU jam menilai. Ini termasuk biaya tambahan gerbang logika diperlukan untuk melaksanakan pemeriksaan, dan waktu tunda yang melalui pintu. Penelitian menunjukkan pintu gerbang biaya dalam beberapa kasus dapat NK pintu, dan biaya keterlambatan k2logn, dimana n adalah jumlah instruksi pada prosesor's set instruksi, dan k adalah jumlah bersamaan menurunkan petunjuk. Dalam matematika, ini disebut sebagai combinatoric masalah melibatkan permutations.
Meski mungkin berisi instruksi streaming tidak antar-instruksi dependensi, superscalar CPU yang sebenarnya harus memeriksa bahwa kemungkinan, karena tidak ada jaminan lain dan kegagalan untuk mendeteksi suatu dependensi akan menghasilkan hasil yang salah.
Tidak peduli bagaimana lanjutan proses yang semikonduktor atau cara cepat kecepatan yang berpindah, ini tempat yang praktis membatasi berapa petunjuk dapat menurunkan secara bersamaan. Meskipun proses kemajuan akan mengijinkan pernah lebih besar jumlah unit fungsional, beban instruksi memeriksa dependensi sehingga tumbuh pesat yang dicapai superscalar dispatch batas relatif kecil. Kemungkinan pada urutan lima hingga enam secara bersamaan menurunkan petunjuk.
Namun akhirnya tak terhingga cepat memeriksa ketergantungan pada logika konvensional yang lain superscalar CPU, jika instruksi streaming itu sendiri memiliki banyak dependensi, ini juga akan membatasi speedup mungkin. Dengan demikiantingkat hakiki paraleldalam kode streaming bentuk kedua dalam keterbatasan.
6. Kesimpulan.
Diantara kelebihan dan kekurangan dari arsitektur RISC dan arsitektur CISC sampai sekarang masih menjadi sebuah perdebatan. Ada juga teknologi yang menggabungkan kedua arsitektur tersebut, contohnya : Prosesor Intel dan AMD yang dijual secara komersil sekarang adalah pengembangan dari prosesor x86 yang menggunakan basis prosesor CISC. Lucunya, instruksi set yang didukung oleh kedua prosesor tersebut menggunakan instruksi RISC yang lebih efisien dalam menangani
data.

Komponen dasar jaringan

Secara garis besar 2 hal yang sangat mempengaruhi sebuah komputer adalah hardware dan software.Jika kita membahas tentang komponen komputer maka secara otomatis kita akan membicarakan mengenai hardware. Hardware sendiri secara garis besar terbagi atas 3 hal yaitu:
1.      Bagian input
2.      Peralatan pemrosesan
3.      Bagian output
Di dalam CPU terdapat Mainboard,
Pada bagian CPU sendiri terdiri dari tiga bagian fungsional yang perlu diperhatikan dalam penggunaan komputer:

  1. Register berfungsi menyimpan data sementara yang akan diproses di ALU.
  2. CU (Control Unit) berfungsi untuk melakukan pengendalian semua peralatan lainya
  3. ALU (Arithmetic Logical Unit) berfungsi melakukan semua proses yang membutuhkan perhitungan matematika dan perbandingan secara logika.
Pada bagian input, komponen-komponen komputer umum yang harus kita ketahui adalah:

1. Motherboard

















Motherboard atau mainboard merupakan papan utama dimana terdapat komponen-
komponen serta chip controller yang bertugas mengatur lalu lintas data dalam
sistem motherboard. Pada Motherboard juga terdapat socket untukproce sso r, slot-
slot yang digunakan untuk pemasangan komponen kartu seperti VGA Card, Sound
Card, Internal Modem, dan lain-lain.


Secara umum, motherboard mempunyai fungsi berikut ini :
* Organisasi, mengatur dan menentukan alat ( peripheral ) yang bisa dipasang pada
komputer
* Kontrol, di dalam motherboard terdapat chipset dan program BIOS yang berfungsi
mengatur data
komponen komputer lain
* Komunikasi, hampir semua komunikasi harus melalui motherboard